

Evaluations of an ocean bottom electro-magnetometer and preliminary results offshore NE Taiwan

Ching-Ren Lin¹, Chih-Wen Chiang², Kuei-Yi Huang², Yu-Hung Hsiao³, Po-Chi Chen³, Hsu-Kuang Chang³, Jia-Pu Jang³, Kun-Hui Chang¹, Feng-Sheng Lin¹, Saulwood Lin⁴, and Ban-Yuan Kuo¹

1 Institute of Earth Sciences, Academia Sinica, Taipei 11529, Taiwan, R.O.C

2 Institute of Earth Sciences, National Taiwan Ocean University. Keelung 20224, Taiwan, ROC.

3 Taiwan Ocean Research Institute, National Applied Research Laboratories, Kaohsiung 80143, Taiwan, R.O.C.

4 Institute of Oceanography, National Taiwan University, Taipei 10617, Taiwan, R.O.C

Corresponding author: Chih-Wen Chiang

Address: Institute of Earth Sciences, National Taiwan Ocean University, Keelung 20224, Taiwan

E-mail: zjiang@ntou.edu.tw Tel: +886-2-24622192 Ext.6513 Fax: +886-2-24625038

April, 2019

Page 1 of 31 pages

1	ABSTRACT
2	The first stage of field experiments involving the design and construction of a low-
3	power consumption ocean bottom electro-magnetometer (OBEM) has been completed.
4	To improve the performance of the OBEM, we rigorously evaluated each of its units,
5	e.g., the data loggers, acoustic parts, internal wirings, and magnetic and electric sensors,
6	to eliminate unwanted events such as unrecovered or incomplete data. The evaluations
7	of the procedure included the following.
8	• Data logger: digitizer sensitivity, linearity, and errors
9	• Acoustic transceiver: "ENABLE," "DISABLE," "RANGE," "RELEASE1,"
10	"RELEASE2," and "OPTION1" functions
11	• Magnetic sensor: sensitivity of the fluxgate and orthogonality
12	• Electrical receiver: potential voltage, impedance, and frequency responses
13	• Power consumption: the maximum operating current of two sets of batteries
14	• Deployment and recovery procedures on deck
15	We confirmed the optimal performance of the OBEM after repeatedly testing the
16	procedures.
17	
18	The first offshore deployment of the OBEM together with ocean bottom seismographs
19	(OBSs) was performed in NE Taiwan, where the water depth is approximately 1,400
20	m. The total intensity of the magnetic field (TMF) measured by the OBEM varied in
21	the range of 44,100-44,150 nT, which corresponded to the proton magnetometer
22	measurements. The daily variations of the magnetic field were recorded using the two
23	horizontal components of the OBEM magnetic sensor. We found that the inclinations
24	and magnetic data of the OBEM varied with two observed earthquakes when compared
25	to the OBS data. The potential fields of the OBEM were slightly, but not obviously,
26	affected by the earthquakes.
27	
28	Keywords: OBEM; data logger; acoustic transceiver; fluxgate; non-polarizing
29	electrodes.
30	

31 **1. Introduction**

32 Marine electromagnetic exploration is a geophysical prospecting technique used to

33 reveal the electrical resistivity features of the oceanic upper mantle down to depths of 34 several hundreds of kilometers in different geologic and tectonic environments, such as 35 in areas around mid-oceanic ridges, areas around hot-spot volcanoes, subduction zones, 36 and normal ocean areas between mid-oceanic ridges and subduction zones zones (Ellis 37 et al., 2008; Evans et al., 2005; Key, 2012; Utada, 2015). Marine controlled source 38 electromagnetic (MCSEM) methods have been used for methane hydrate mapping to 39 detect offshore hydrocarbons (Constable, 2010; Goto et al., 2008; Schwalenberg et al., 40 2017; Weitemeyer et al., 2011; Weitemeyer et al., 2006).

41

42 Even though many magnetotelluric explorations have investigated deep electrical 43 structures on Taiwan (Bertrand et al., 2009; Bertrand et al., 2012; Chiang et al., 2011a; 44 Chiang et al., 2010; Chiang et al., 2015; Chiang et al., 2008), there were no marine electromagnetic experiments around Taiwan until 2010. The first MCSEM survey was 45 carried out for gas hydrate investigations offshore SW Taiwan (Hsu et al., 2014). 46 47 Marine electromagnetic methods have gradually gained the attention of Taiwanese 48 scientists following these MCSEM experiments (Chiang et al., 2012; Chiang et al., 49 2011b).

50

51 The first generation of ocean bottom seismographs (OBSs) was developed by the 52 Institute of Earth Sciences, Academia Sinica (IES), Taiwan Ocean Institute, National 53 Applied Research Laboratories, and the Institute of Undersea Technology, National Sun 54 Yat-sen University (OBS R&D team), in 2009, the so-called Yardbird-20s. These OBSs 55 have acquired large amounts of data via a series of deployments offshore Taiwan that 56 can be used to study plate tectonics and crustal characteristics (Kuo et al., 2015; Kuo et 57 al., 2012; Kuo et al., 2014). Subsequently, the OBS R&D team developed an ocean bottom electro-magnetometer (OBEM) modified from the OBS based on important 58 59 developmental experiments.

60

The novel OBEM was constructed by the OBS R&D team and has completed the first stage of field experiments by the Institute of Earth Sciences, National Ocean Taiwan University, and IES. One OBEM and six broadband OBSs, so-called BBYBs, were deployed at the western end of the Okinawa Trough (OT), NE Taiwan, for field testing in March 2018. The water depth in this area is approximately 1,400 m. All the

- 66 instruments were successfully recovered in May 2018 after collecting the first OBEM
- 67 field data in Taiwan. Here, we introduce the OBEM design, specifications, calibration
- 68 procedures, and its further developments and improvements.
- 69

70 2. The OBEM design

71 The OBEM is designed to be wireless deep-underwater equipment; however, the power 72 supply is limited for the wireless OBEM because the batteries cannot be directly 73 charged via electric cables from vessels. Therefore, designing low-power consumption 74 for the OBEM and high-efficiency battery packs is critically required for long periods 75 of operation. The major units of the OBEM include a data logger, a magnetic sensor, a 76 tiltmeter, electric receivers with an arm-folding mechanism, a relocation system, 77 recovery units, and an anchor. All the units for the OBEM use nonmagnetic materials 78 (e.g., the screws and anchor). Figure 1 shows a block diagram of the OBEM. We 79 designed the data logger, release mechanism, and the OBEM platform to integrate all 80 the sensors or units purchased from related manufactories and focused on the issues of 81 saving power and reducing costs. The detailed requirements of the OBEM are listed 82 below. 83 1. A magnetic sensor with three axes for measuring magnetic fields 2. A tiltmeter with two axes for measuring leveling changes to correct the tilt error 84 85 of the magnetic sensor 86 3. Two pairs of non-polarized electrodes with 2-m bendable arms with a total distance between the electrodes of approximately 4.5 m 87 88 4. A highly accurate data logger with at least seven channels and a sampling rate 89 of greater than or equal to 10 samples per second (SPS) 90 5. An operation time of more than 90 days 6. An internal timing error of less than 3 s y^{-1} synchronized with GPS 91 92 7. Acoustic relocation and recovery control systems 93 8. A power consumption of less than 1.5 W 94 9. A radio beacon, flush beacon, reflect label, and orange flag for identification on 95 the sea surface during instrument recovery 10. A 0.75 m s⁻¹ subside rate for deployment and float up rate for recovery 96 97 11. A maximum deployment depth of more than 6,000 m appropriate for most

98 seawater depths offshore Taiwan

Page 4 of 31 pages

99	
100	The solutions found for the OBEMs are listed below.
101	1. A fluxgate with three axes with a sensitivity of $\pm 70,000$ nT
102	2. A tiltmeter with two axes with inclinations of $\pm 30^{\circ}$
103	3. Two pairs of silver chloride electrodes with a 2-m arm-folding mechanism
104	4. A low noise and low-power consumption eight differential channel 24-bit A/D
105	data logger with an accurate internal timing clock
106	5. Acoustic transponder and controller units
107	6. Radio beacon and flash beacon units
108	7. An OBEM platform modified from that of OBS
109	8. High-efficiency lithium battery packs for the sensors and data logger
110	
111	3. Units of the OBEM and their specifications
112	The OBEM is recovered by releasing its anchor from the seafloor via an on-board
113	acoustic command. The OBEM is returned to the sea surface via buoyancy when the
114	anchor is released. There are two typical release mechanisms available for OBEMs to
115	unlock their anchors: spin motor and burn-wire systems (Kasaya and Goto, 2009). The
116	OBEM uses the burn-wire system because it weighs less than the spin motor system.
117	The acoustic controller and transducer use ORE #B980175 ASSY PCB and #D980709,
118	respectively, manufactured by EdgeTech, USA, for the corresponding functions of
119	OBEM recovery and underwater ranging. The ASSY PCB acoustic controller uses a
120	binary FSK encoder, including the commands "RELEASE1," "RELEASE2,"
121	"DISABLE," "ENABLE," and "OPTIONAL1." The frequency of the acoustic range
122	ranges from 7.5 kHz to 15 kHz in increments of 0.5 kHz with a sensitivity of 80 dB re
123	1uPa. The #D980709 transducer can work at a depth of 6,000 m and in environments
124	from -10° C to $+40^{\circ}$ C.
125	
126	The EdgeTech 8011M model acoustic commander (8011M) is used on board to send
127	the "ENABLE" command to open the ranging function, the "RANGE" command to
128	measure the distance between the OBEM and the research vessel, the "DISABLE"
129	command to close the ranging function, and the "RELEASE1" command to activate

130 the burn-wire system to release the anchor. The "RELEASE1" command persists for

131 15 min unless terminated by the "OPTIONAL1" command.

Page 5 of 31 pages

132

133 We selected the RF-700A and ST-400A NOVATECH models for the radio and flash beacons, respectively, for use in the OBEM. The maximum deployment depth for these 134 models is 7,300 m. The radio beacon is turned ON by sending a VHF signal, and the 135 136 flush beacon is turned ON at an atmospheric pressure of less than 1 atm (equal to a 137 depth of 10 m below the sea surface) in a dark environment. The beacons are also turned 138 OFF at a depth of 10 m or at an atmospheric pressure of less than 1 atm, respectively. 139 These two beacons have four independently installed C-type alkaline batteries that 140 allow for six days of continuous operation at maximum; this power supply differs from 141 that of the data logger. The two independent power supply layouts allow the beacons to properly operate even if the power supply for the data logger fails. An on-board radio 142 143 scanner detects the signal transmitted from the radio beacon at a distance of 6.4-12.9 144 km when the OBEM is floating on the surface. These two beacons can assist in locating 145 the OBEM on the sea surface in both daytime and nighttime.

146

147 TL-5930 model lithium batteries manufactured by TADIRAN are used for the OBEM, 148 with specifications of 3.6 V, 19 Ah, and D-type with characteristics of high energy 149 density and a low self-discharge rate suitable for long periods of operation. Figure 2 shows a block diagram of the OBEM data logger. The ADC1278EVM model is a 24-150 151 bit A/D converter used for the inputs of the three fluxgate axes, the two tiltmeter axes, and two pairs of non-polarized electrodes with a sampling rate of 10 SPS. An amplifier 152 153 and low-pass filter (Amp & LPF) were designed for the magnetic sensor, leveling sensor, 154 and electric receiver inputs. The two MPS430F5436A microcontrollers (MCU) process 155 the timing synchronization of the time base manufactured by SeaSCAN, USA, and the GPS modules; the digital data is stored to a Secure Digital (SD) memory card with a 156 standard Secure Digital High Capacity (SDHC), and the user interface communicates 157 with a PC. The time base module supplies a precise time base signal to the data logger, 158 159 whereas the SISMTB Ver 4.1 time base module generates a precise 125-Hz clock that 160 supports a timing error smaller than 3 s y⁻¹. Even though the time base module supports a very small timing error of 3 s y⁻¹, the data logger clock is still synchronized with the 161 GPS on deck for timing corrections after recovering the OBEM. The maximal capacity 162 163 of the SD card is 64 GB and can support data storage for more than one year with a 164 sampling rate of 10 SPS.

165

Two 17-in glass VITROVEX spheres manufactured by Nautilus Marine Service GmbH, 166 Germany, are used for the OBEM. These glass spheres contain the fluxgate and tiltmeter 167 (sensor ball) and the seven channels of the Amp & LPF, data logger, #B980175 ASSY 168 169 PCB acoustic controller, and batteries (instrument ball) and can be deployed at a depth 170 of 6,000 m and support a total buoyancy of 52 kg. The instrument and sensor balls, the 171 silver chloride electrodes, and the burn-wire system are connected via waterproof 172 cables. There is a pressure-vacuum valve outside the glass spheres that allows a pumped 173 vacuum to be preserved at 0.7 atm; self-fusing butyl rubber tape is used to fill the suture 174 zone between the half glass spheres. In addition, two crossed stainless-steel bands are used to improve the waterproofing of the glass spheres and cover the orange PE cases. 175 176 Four PVC pipes with lengths of 2 m are combined to form the OBEM platform for the 177 electric receivers, and the silver chloride electrodes are installed at the ends of the pipes. 178 A 60-kg nonmagnetic anchor is attached to the bottom of the OBEM platform and 179 catches via a releasing mechanism. The anchor can be released using the burning-wire 180 system to recover the OBEM. Figure 3 shows a photograph of the OBEM platform. 181

182 4. Calibrations of the OBEM

183 It is necessary to calibrate each unit of the OBEM, including the data logger with the 184 Amp & LPF, fluxgate, tiltmeter, electrodes, ASSY PCB acoustic controller, transducer, 185 and wiring, before and after assembling the OBEM to improve its performance. We 186 describe the series of calibration methods used for the OBEM units in the following 187 section.

188

189 4.1 Calibrations of the background noise of the data logger and the Amp & LPF

190 The background noise of the data logger is defined as

191
$$N_{rms} = \sqrt{\frac{1}{n}(A_1^2 + A_2^2 + \dots + A_n^2)}, (1)$$

192 where *n* is a data point and A_1 to A_n indicate the amplitudes of the data points, 1 to n,

193 individually at short circuit or 0 V. The background noise of the data logger (in "BIT")

194 is calculated as

195
$$dB_{rms} = 20 \log_2(N_{rms}), \quad (2)$$

196	The data logger contains seven input channels called MX, MY, MZ, TX, TY, EX, and
197	EY. MX, MY, and MZ are used for the magnetic sensor of the fluxgate, TX and TY are
198	used for the tiltmeter, and EX and EY are used for the electric receivers. The calibration
199	procedure is described below.
200	1. Connect MX, MY, MZ, TX, and TY to GND, EX+ with EX-, and EY+ with
201	EY
202	2. Start the record mode of the data logger, wait 60 s to acquire data, and then stop
203	recording data.
204	3. Download the data from the data logger and convert it to ASCII format. Then,
205	calculate the background noise using Eq. (1) and the background noise in dB
206	using Eq. (2).
207	
208	4.2 Calibrations of the sensitivity, linearity error, and dynamic range for the
209	data logger and the Amp & LPF
210	The input ranges of the voltages for MX, MY, and MZ are ± 10 V, for TX and TY are
211	± 5 V, and for EX and EY are ± 0.00625 V. The sensitivities are calculated from the
212	average count of the input voltages, that is, subtract the average count at zero voltage
213	and then divide by the input voltages:
214	$S = Average\left(\frac{Average(C_{i}) - Average(C_{0})}{V_{i}}\right), (3)$
215	where V_i is the input voltage, C_i is the output count saved on the SD card for an input
216	voltage of $V_{i},$ and C_{0} is the output count saved on the SD card for an input voltage of $\boldsymbol{0}$
217	V.
218	
219	The linearity errors are calculated such that
220	$Error = Abs\left[\frac{S_i - S_T}{S_T}\right] \times 100, (4)$
221	where S_i is the sensitivity of the input voltage and S_T is the total sensitivity.
222	
223	The dynamic range is the ratio of the maximum count to the background noise. It is

224 defined as

225
$$D = 20 \log\left(\frac{S_T \times V \max}{N_{RMS}}\right), (5)$$

226 where S_T is the total sensitivity and Vmax is 10 V for MX, MY, and MZ, 5 V for TX

227	and TY, and 0.00625 V for EX and EY. Its calibration procedure is described below.
228	1. Connect the MX, MY, and MZ channels of the data logger to the source voltages
229	generated by the calibrator (FLUKE726) and connect the GND channel of the
230	data logger to the source common point (COM) of FLUKE726.
231	2. Set the data logger to the recording mode.
232	3. Set the FLUKE726 output voltages from 0 V to ± 10 V. Increase and decrease
233	the voltages step by step in 1 V intervals until ± 10 V. The measurement time
234	length for each output voltage is 20 s.
235	4. Connect the TX and TY channels of the data logger to the source voltages
236	generated by FLUKE726 and connect the GND channel of the data logger to
237	COM of FLUKE726.
238	5. Set the FLUKE726 output voltages from 0 V to ± 5 V. Increase and decrease the
239	voltages step by step in 1 V intervals until ± 5 V. The measurement time length
240	for each output voltage is 20 s.
241	6. Connect the EX+ and EY+ channels of the data logger to the source voltages
242	generated by FLUKE726, and connect the EX- and EY- channels of the data
243	logger to COM of FLUKE726.
244	7. Set the FLUKE726 output voltages from 0 V to ± 6 mV. Increase and decrease
245	the voltages step by step in 1-mV intervals until ± 6 mV. The measurement time
246	length for each output voltage is 20 s.
247	8. Finally, switch off the recording mode of the data logger, download the data,
248	and convert it to ASCII format for analysis. Calculate the sensitivity, linearity
249	error, and dynamic range using Eqs. (3), (4), and (5), respectively.
250	
251	Tables 1–3 show the results for the background noise, sensitivity, linearity error, and
252	dynamic range of the calibrations of the magnetic (MX, MY, and MZ), electric (EX
253	and EY), and tiltmeter (TX and TY) channels of the OBEM01 data logger and the Amp
254	& LPF. Figure 4 shows an example calibration of the magnetic channels checking the
255	sensitivity, linearity, and error. The average sensitivity is 655,968.5 counts/V with a
256	maximum error smaller than 1.35%. Figure 5 shows an example calibration of the
257	electric channels checking the sensitivity, linearity, and error. The average sensitivity
258	is 135,856,047.8 counts/V with a maximum error smaller than 0.8%. Figure 6 shows
259	an example calibration of the tiltmeter channels checking the sensitivity, linearity, and

²⁶⁰ error. The average sensitivity is 1,677,710.6 counts/V with a maximum error smaller

- than 0.25%.
- 262

4.3 Evaluation of the current consumption

264 The power supplies of the OBEM consist of two 7.2-V battery packs in a series 265 connection with two 3.6-V lithium batteries. One battery pack is for the data logger and 266 converts to ± 5 VDC and +3.3 VDC. The other pack is for the sensors and converts to 267 ± 5 VDC and ± 12.0 VDC. Two ± 7.4 -VDC output current batteries were measured for 268 their current consumption measurement using two ammeters connecting the two +7.4-269 V battery packs. Table 4 shows the current consumption of the OBEM system. The 270 maximum current consumptions of the data logger and sensors are 32 mA and 105 mA, 271 respectively. The total power consumption is less than 1 W, which corresponds to 272 expectations.

273

4.4 Evaluation of the electrodes

275 Two pairs of silver chloride electrodes are used for the OBEM. We first put a pair of 276 electrodes separated by a fixed distance within a tank filled with seawater to check the 277 status of the electrodes. Second, we measured the electrical potential and impedance of 278 the electrodes using a digital volt-ohm-milliammeter (VOM) (Fig. 7). Third, we sent a 279 sweep sine signal to check the frequency responses of the electrodes, as shown in Fig. 280 8. Fourth, we input a DC voltage to check the electrode-induced voltages, as shown in 281 Fig. 9. Table 5 shows the self-potential, impedance, and induced voltages for each pair 282 of electrodes. The ranges of the self-potential and impedance are 0.26-3.63 mV and 283 243–370 Ω , respectively. The electrical potential shows that 81–167 mV was 284 transmitted from the 5 VDC of the two copper electrodes.

285

4.5 Evaluation of the fluxgate

The fluxgate is mounted in the sensor ball of the OBEM. Therefore, we could only calculate the total magnetic field (TMF) (Eq. (6)) measured from the three components of the fluxgate. We then compared the difference between the TMF of the OBEM and geomagnetic data of the geophysical database management system from the Central Weather Bureau. The TMF is calculated by

292	$M_T = \sqrt{(M_X^2 + M_Y^2 + M_Z^2)}, (6)$
293	where M_X , M_Y , and M_Z are the components of the north–south, east–west, and vertical
294	magnetic fields, respectively.
295	
296	4.6 Evaluation of the acoustic transceiver and its transducer
297	We selected the large-scale Breeze Canal in New Taipei City for testing because it has
298	few obstacles and is suitable for evaluating the functions of the 8011M. The Breeze
299	Canal has a length of approximately 800 m and is located in a straight river with a depth
300	of 2-5 m. The distance between the transducer and the acoustic transceiver was
301	approximately 630 m, and the layout for the field test is shown in Fig. 10. The testing
302	procedure for the transducers is described below. The results are listed in Table 6.
303	1. Connect the tested transducer and acoustic transceiver via an underwater cable,
304	and place the tested transducer and transceiver at an underwater depth of 1 m.
305	2. Record the serial numbers of the transducers in a notebook.
306	3. Send the "ENABLE" command via the 8011M, and then count the response
307	beeps.
308	4. Send the "RANGE" command via the 8011M five times, and record the distance
309	of each ranging.
310	5. Send the "DISABLE" command via the 8011M, and then count the response
311	beeps.
312	6. Replace the transducer, and return to step 2 to repeat the evaluation.
313	
314	We then checked the acoustic transceivers after all of the transducers were successfully
315	checked; the testing procedure for the acoustic controller is described below. The results
316	are listed in Table 7.
317	1. Change the acoustic controller, and record its serial number in a notebook.
318	2. Send the "ENABLE" command via the 8011M, and then count the response
319	beeps.
320	3. Send the "RANGE" command via the 8011M five times, and record the distance
321	of each ranging.
322	4. Send the "RELEASE1" command via the 8011M, and then count the response
323	beeps. Check the voltage between Pin1 and Pin2 of JP2 using a VOM. It should

324	be greater than 12.0 VDC
224	5 Sand the "OPTION1" command via the 2011M and then count the response
323 226	5. Send the OPTIONT command via the 8011M, and then count the response
326	beeps. Check the voltage between Pin1 and Pin2 of JP2 using a VOM. It should
327	be 0 VDC.
328	6. Send the "RELEASE2" command via the 8011M, and then count the response
329	beeps. Check the voltage between Pin3 and Pin4 of JP2 using a VOM. It should
330	be greater than 12.0 VDC.
331	7. Send the "OPTION1" command via the 8011M, and then count the response
332	beeps. Check the voltage between Pin3 and Pin4 of JP2 using a VOM. It should
333	be 0 VDC.
334	8. Send the "DISABLE" command via the 8011M, and then count the response
335	beeps.
336	9. Send the "RANGE" command via the 8011M; there should be no response from
337	the transceiver.
338	10. Return to step 1 to repeat the evaluation.
330	A mercury switch is mounted on the transceiver which when turned off responds with
559	Thereary switch is mounted on the transcerver when turned on responds with
340	15 beeps and when turned on responds with seven beeps.
340 341	15 beeps and when turned on responds with seven beeps.
340341342	15 beeps and when turned on responds with seven beeps.5. The preliminary result of the OBEM offshore Taiwan
 339 340 341 342 343 	 15 beeps and when turned on responds with seven beeps. 5. The preliminary result of the OBEM offshore Taiwan We deployed six broadband BBYBs and one OBEM near a small submarine volcano
 340 341 342 343 344 	 15 beeps and when turned on responds with seven beeps. 5. The preliminary result of the OBEM offshore Taiwan We deployed six broadband BBYBs and one OBEM near a small submarine volcano area in the OT offshore NE Taiwan (Fig. 11) on 03/26/2018 for a submarine observation
340 341 342 343 344 345	 15 beeps and when turned on responds with seven beeps. 5. The preliminary result of the OBEM offshore Taiwan We deployed six broadband BBYBs and one OBEM near a small submarine volcano area in the OT offshore NE Taiwan (Fig. 11) on 03/26/2018 for a submarine observation to evaluate all the OBEM units. All the equipment was successfully recovered after one
 3340 341 342 343 344 345 346 	 15 beeps and when turned on responds with seven beeps. 5. The preliminary result of the OBEM offshore Taiwan We deployed six broadband BBYBs and one OBEM near a small submarine volcano area in the OT offshore NE Taiwan (Fig. 11) on 03/26/2018 for a submarine observation to evaluate all the OBEM units. All the equipment was successfully recovered after one month of deployment. Figure 12 shows the time series data of OBEM01. The TMF
 3340 341 342 343 344 345 346 347 	 15 beeps and when turned on responds with seven beeps. 5. The preliminary result of the OBEM offshore Taiwan We deployed six broadband BBYBs and one OBEM near a small submarine volcano area in the OT offshore NE Taiwan (Fig. 11) on 03/26/2018 for a submarine observation to evaluate all the OBEM units. All the equipment was successfully recovered after one month of deployment. Figure 12 shows the time series data of OBEM01. The TMF calculated from the three components of the magnetic field varied in the range of
 339 340 341 342 343 344 345 346 347 348 	 15 beeps and when turned on responds with seven beeps. 5. The preliminary result of the OBEM offshore Taiwan We deployed six broadband BBYBs and one OBEM near a small submarine volcano area in the OT offshore NE Taiwan (Fig. 11) on 03/26/2018 for a submarine observation to evaluate all the OBEM units. All the equipment was successfully recovered after one month of deployment. Figure 12 shows the time series data of OBEM01. The TMF calculated from the three components of the magnetic field varied in the range of 44,100–4,4150 nT, which corresponded to the geomagnetic field measured by proton
 339 340 341 342 343 344 345 346 347 348 349 	 15 beeps and when turned on responds with seven beeps. 5. The preliminary result of the OBEM offshore Taiwan We deployed six broadband BBYBs and one OBEM near a small submarine volcano area in the OT offshore NE Taiwan (Fig. 11) on 03/26/2018 for a submarine observation to evaluate all the OBEM units. All the equipment was successfully recovered after one month of deployment. Figure 12 shows the time series data of OBEM01. The TMF calculated from the three components of the magnetic field varied in the range of 44,100–4,4150 nT, which corresponded to the geomagnetic field measured by proton magnetometers in Taiwan. The two horizontal magnetic fields contained significant
 3340 341 342 343 344 345 346 347 348 349 350 	 15 beeps and when turned on responds with seven beeps. 5. The preliminary result of the OBEM offshore Taiwan We deployed six broadband BBYBs and one OBEM near a small submarine volcano area in the OT offshore NE Taiwan (Fig. 11) on 03/26/2018 for a submarine observation to evaluate all the OBEM units. All the equipment was successfully recovered after one month of deployment. Figure 12 shows the time series data of OBEM01. The TMF calculated from the three components of the magnetic field varied in the range of 44,100–4,4150 nT, which corresponded to the geomagnetic field measured by proton magnetometers in Taiwan. The two horizontal magnetic fields contained significant daily variations. Furthermore, the vibrations of the inclinations were significantly
 339 340 341 342 343 344 345 346 347 348 349 350 351 	 5. The preliminary result of the OBEM offshore Taiwan We deployed six broadband BBYBs and one OBEM near a small submarine volcano area in the OT offshore NE Taiwan (Fig. 11) on 03/26/2018 for a submarine observation to evaluate all the OBEM units. All the equipment was successfully recovered after one month of deployment. Figure 12 shows the time series data of OBEM01. The TMF calculated from the three components of the magnetic field varied in the range of 44,100–4,4150 nT, which corresponded to the geomagnetic field measured by proton magnetometers in Taiwan. The two horizontal magnetic fields contained significant daily variations. Furthermore, the vibrations of the inclinations were significantly affected by two earthquakes on 04/27/2018 (at 12:41 UTC and 12:47 UTC) consistent
340 341 342 343 344 345 346 347 348 349 350 351 352	 15 beeps and when turned on responds with seven beeps. 5. The preliminary result of the OBEM offshore Taiwan We deployed six broadband BBYBs and one OBEM near a small submarine volcano area in the OT offshore NE Taiwan (Fig. 11) on 03/26/2018 for a submarine observation to evaluate all the OBEM units. All the equipment was successfully recovered after one month of deployment. Figure 12 shows the time series data of OBEM01. The TMF calculated from the three components of the magnetic field varied in the range of 44,100–4,4150 nT, which corresponded to the geomagnetic field measured by proton magnetometers in Taiwan. The two horizontal magnetic fields contained significant daily variations. Furthermore, the vibrations of the inclinations were significantly affected by two earthquakes on 04/27/2018 (at 12:41 UTC and 12:47 UTC) consistent with seismic signals of the BBYBs (Fig. 13). The average magnetic fields of HX, HY,
340 341 342 343 344 345 346 347 348 349 350 351 352 353	 15 beeps and when turned on responds with seven beeps. 5. The preliminary result of the OBEM offshore Taiwan We deployed six broadband BBYBs and one OBEM near a small submarine volcano area in the OT offshore NE Taiwan (Fig. 11) on 03/26/2018 for a submarine observation to evaluate all the OBEM units. All the equipment was successfully recovered after one month of deployment. Figure 12 shows the time series data of OBEM01. The TMF calculated from the three components of the magnetic field varied in the range of 44,100–4,4150 nT, which corresponded to the geomagnetic field measured by proton magnetometers in Taiwan. The two horizontal magnetic fields contained significant daily variations. Furthermore, the vibrations of the inclinations were significantly affected by two earthquakes on 04/27/2018 (at 12:41 UTC and 12:47 UTC) consistent with seismic signals of the BBYBs (Fig. 13). The average magnetic fields of HX, HY, HZ, and TMF 2 s prior to the earthquakes (12:41 UTC) were 12,900 nT, 34,300 nT,
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354	 5. The preliminary result of the OBEM offshore Taiwan We deployed six broadband BBYBs and one OBEM near a small submarine volcano area in the OT offshore NE Taiwan (Fig. 11) on 03/26/2018 for a submarine observation to evaluate all the OBEM units. All the equipment was successfully recovered after one month of deployment. Figure 12 shows the time series data of OBEM01. The TMF calculated from the three components of the magnetic field varied in the range of 44,100–4,4150 nT, which corresponded to the geomagnetic field measured by proton magnetometers in Taiwan. The two horizontal magnetic fields contained significant daily variations. Furthermore, the vibrations of the inclinations were significantly affected by two earthquakes on 04/27/2018 (at 12:41 UTC and 12:47 UTC) consistent with seismic signals of the BBYBs (Fig. 13). The average magnetic fields of HX, HY, HZ, and TMF 2 s prior to the earthquakes (12:41 UTC) were 12,900 nT, 34,300 nT, 24,600 nT, and 44137 nT, respectively, the average potential fields of EX and EY were

and 1.21°, respectively. These were the averages of the background without earthquakes.

357

We subtracted the background averages of the magnetic fields and the inclinations to compare the differential during the 12:41 UTC event as shown in Fig. 14. The peak ground motion velocity (PGV) was 2.63 cm s⁻¹ on the SH1 corresponding to inclinations of 0.4° and 0.6° for TX and TY with a 100 nT disturbance of HY. There was an insignificant amount of variation in the electric fields. The result shows that the earthquake significantly affected the HY component.

364

365 6. Conclusions

A long-period OBEM acquisition platform to measure magnetic and electrical fields on the seafloor was successfully constructed and evaluated by the OBS R&D team for deployment offshore Taiwan. The power consumption of the OBEM is less than 1 W, which means that the lifetime could be extended up to 300 days with the installation of 108 lithium batteries. We deployed and recovered the OBEM at an underwater depth of 1,400 m to acquire the first marine magnetotelluric data offshore NE Taiwan.

372

Six broadband BBYBs and one OBEM were deployed near a small submarine volcano area offshore NE Taiwan. The TMF calculated from the three magnetic field components varied in the range of 44,100–4,4150 nT, which corresponded to the proton magnetometer measurements of the geomagnetic field in Taiwan. The two horizontal magnetic fields displayed significant daily variations, and the vibrations of the inclinations were significantly affected by the two earthquakes that occurred during the observations. There was an insignificant amount of variation in the electric fields.

380

Localized micro-earthquakes affected the disturbances of magnetic field and inclinations in this study. Therefore, to improve the efficacy of marine geophysical explorations, a platform for multiple underwater measurements is required including an ocean bottom flow meter, thermometer, and absolute pressure gage. We will focus on such developments in the future.

386

387 Acknowledgments

388 We greatly appreciate the crews of R/V OR2 for the field experiments. The authors

- 389 acknowledge the financial support from the Ministry of Science and Technology of 390 Taiwan under grant numbers of 105-2116-M-019-001, 106-2116-M-001-008, 106-391 2116-M-019-003, and 107-2116-M-019-006. We also thank four years of the Taiwan-German cooperative projects on gas hydrate of NEPII for supporting the funds of the 392 393 instrument deployment of the OBEMs. We would like to thank the TEC Data Center 394 for proving graphical services. 395 396 References 397 Bertrand, E., Unsworth, M., Chiang, C. W., Chen, C. S., Chen, C. C., Wu, F., Turkoglu,
- E., Hsu, H. L., and Hill, G.: Magnetotelluric evidence for thick-skinned tectonics
 in central Taiwan, Geology, 37, 711-714, 2009.
- Bertrand, E. A., Unsworth, M. J., Chiang, C. W., Chen, C. S., Chen, C. C., Wu, F. T.,
 Turkoglu, E., Hsu, H. L., and Hill, G. J.: Magnetotelluric imaging beneath the
- 402 Taiwan orogen: An arc-continent collision, J Geophys Res-Sol Ea, 117, 2012.
- 403 Chiang, C. W., Chen, C. C., Unsworth, M., Bertrand, E., Chen, C. S., Kieu, T. D., and
- 404 Hsu, H. L.: The deep electrical structure of southern Taiwan and its tectonic
- 405 implications (vol 21, pg 879, 2010), Terr. Atmos. Ocean Sci., 22, 371-371, 2011a.
- 406 Chiang, C. W., Chen, C. C., Unsworth, M., Bertrand, E., Chen, C. S., Thong, D. K., and
- Hsu, H. L.: The deep electrical structure of southern Taiwan and its Tectonic
 Implications, Terr. Atmos. Ocean Sci., 21, 879-895, 2010.
- 409 Chiang, C. W., Goto, T., Mikada, H., Chen, C. C., and Hsu, S. K.: Sensitivity of deep-
- 410 towed marine electrical resistivity imaging using two-dimensional inversion: a
- 411 case study on methane hydrate, Terr. Atmos. Ocean Sci., 23, 725-732, 2012.
- Chiang, C. W., Goto, T. N., Chen, C. C., and Hsu, S. K.: Efficiency of a marine towed
 electrical resistivity method, Terr. Atmos. Ocean Sci., 22, 443-446, 2011b.
- 414 Chiang, C. W., Hsu, H. L., and Chen, C. C.: An investigation of the 3D electrical
- resistivity structure in the Chingshui geothermal area, NE Taiwan, Terr. Atmos.
 Ocean Sci., 26, 269-281, 2015.
- 417 Chiang, C. W., Unsworth, M. J., Chen, C. S., Chen, C. C., Lin, A. T. S., and Hsu, H. L.:
- 418 Fault zone resistivity structure and monitoring at the Taiwan Chelungpu Drilling
- 419 Project (TCDP), Terr. Atmos. Ocean Sci., 19, 473-479, 2008.
- 420 Constable, S.: Ten years of marine CSEM for hydrocarbon exploration, Geophysics, 75,
- 421 A67-A81, 2010.

422	Ellis, M., Evans, R. L., Hutchinson, D., Hart, P., Gardner, J., and Hagen, R.:
423	Electromagnetic surveying of seafloor mounds in the northern Gulf of Mexico,
424	Mar. Pet. Geol., 25, 960-968, 2008.
425	Evans, R. L., Hirth, G., Baba, K., Forsyth, D., Chave, A., and Mackie, R.: Geophysical
426	evidence from the MELT area for compositional controls on oceanic plates, Nature,
427	437, 249-252, 2005.
428	Goto, T. N., Kasaya, T., Machiyama, H., Takagi, R., Matsumoto, R., Okuda, Y., Satoh,
429	M., Watanabe, T., Seama, N., Mikada, H., Sanada, Y., and Kinoshita, M.: A marine
430	deep-towed DC resistivity survey in a methane hydrate area, Japan Sea, Explor.
431	Geophys., 39, 52-59, 2008.
432	Hsu, S. K., Chiang, C. W., Evans, R. L., Chen, C. S., Chiu, S. D., Ma, Y. F., Chen, S.
433	C., Tsai, C. H., Lin, S. S., and Wang, Y. S.: Marine controlled source
434	electromagnetic method used for the gas hydrate investigation in the offshore area
435	of SW Taiwan, J. Asian Earth Sci., 92, 224-232, 2014.
436	Kasaya, T. and Goto, T.: A small ocean bottom electromagnetometer and ocean bottom
437	electrometer system with an arm-folding mechanism, Explor. Geophys., 40, 41-
438	48, 2009.
439	Key, K.: Marine Electromagnetic Studies of Seafloor Resources and Tectonics, Surv.
440	Geophys., 33, 135-167, 2012.
441	Kuo, B. Y., Crawford, W. C., Webb, S. C., Lin, C. R., Yu, T. C., and Chen, L. W.:
442	Faulting and hydration of the upper crust of the SW Okinawa Trough during
443	continental rifting: Evidence from seafloor compliance inversion, Geophys. Res.
444	Lett., 42, 4809-4815, 2015.
445	Kuo, B. Y., Wang, C. C., Lin, S. C., Lin, C. R., Chen, P. C., Jang, J. P., and Chang, H.
446	K.: Shear-wave splitting at the edge of the Ryukyu subduction zone, Earth Planet.
447	Sci. Lett., 355, 262-270, 2012.
448	Kuo, B. Y., Webb, S. C., Lin, C. R., Liang, W. T., and Hsiao, N. C.: Removing
449	infragravity-wave-induced noise from Ocean-Bottom Seismographs (OBS) data
450	deployed offshore of Taiwan, Bull. Seismol. Soc. Am., 104, 1674-1684, 2014.
451	Schwalenberg, K., Rippe, D., Koch, S., and Scholl, C.: Marine-controlled source
452	electromagnetic study of methane seeps and gas hydrates at Opouawe Bank,
453	Hikurangi Margin, New Zealand, J Geophys Res-Sol Ea, 122, 3334-3350, 2017.
454	Utada, H.: Electromagnetic exploration of the oceanic mantle, P Jpn Acad B-Phys, 91,

- 455 203-222, 2015.
- 456 Weitemeyer, K. A., Constable, S., and Trehu, A. M.: A marine electromagnetic survey
- 457 to detect gas hydrate at Hydrate Ridge, Oregon, Geophys. J. Int., 187, 45-62, 2011.
- 458 Weitemeyer, K. A., Constable, S. C., Key, K. W., and Behrens, J. P.: First results from
- 459 a marine controlled-source electromagnetic survey to detect gas hydrates offshore
- 460 Oregon, Geophys. Res. Lett., 33, 2006.

461	TABLE AND FIGURE CAPTIONS
462	
463	Table 1. The OBEM01 data logger calibration of the magnetic channels with Amp &
464	LPF: the background noise, sensitivity, linearity error, and dynamic range.
465	
466	Table 2. The OBEM01 data logger calibration of the electric channels with Amp & LPF:
467	the background noise, sensitivity, linearity error, and dynamic range.
468	
469	Table 3. The OBEM01 data logger calibration of the tiltmeter channels with Amp &
470	LPF: the background noise, sensitivity, linearity error, and dynamic range.
471	
472	Table 4. The total current consumption of the OBEMs.
473	
474	Table 5. The self-potential, impedance, and induced voltage results for each pair of
475	silver chloride electrodes.
476	
477	Table 6. Example results for the functional test of the acoustic transducer.
478	
479	Table 7. Example results for the functional test of the acoustic controller.
480	
481	Figure 1. A block diagram of the OBEM. The inputs of the two electric fields, two
482	inclinations, and three magnetic fields pass through the Amp & LPF in the data logger,
483	which contains a 64-GB SD card. The SeaSCAN time base module is integrated into
484	the data logger and has a timing error smaller than 3 s $y^{-1}.$ The EdgeTech acoustic
485	transceiver and transducer are used for the positioning and releasing of the anchor. The
486	radio and flash beacons are used to locate the OBEM at the sea surface during recovery
487	operations.
488	
489	Figure 2. A block diagram of the OBEM data logger. The ADS1278EVM is a 24-bit
490	A/D with eight inputs used for converting analog signals via the amplifier and low-pass
491	filter (Amp & LPF) to digital data. The Amp & LPF adjusts the output voltages of the
492	sensors of the fluxgate, tiltmeter, and electric receivers to suitable A/D input levels. The
493	two MCUs of the MPS430F5436A process the timing synchronization by the

- 494 SeaSCAN of time base and GPS modules, the digital data storage to the SD card with
- 495 a standard SDHC, and the user interface communication with a PC.
- 496
- 497 Figure 3. A photograph of the OBEM01 and its specific modules.
- 498
- 499 Figure 4. Calibration results for the magnetic channels of the OBEM01. The average
- sensitivity is 655,968.5 counts/V, and the maximum error is <1.35%.
- 501
- 502 Figure 5. Calibration results for the electric channels of the OBEM01. The average
- sensitivity is 1,358,568,047.8 counts/V, and the maximum error is <0.8%.
- 504
- Figure 6. Calibration results for the inclination channels of the OBEM01. The average
 sensitivity is 1,677,710.6 counts/V, and the maximum error is <0.25%.
- 507
- 508 Figure 7. The layout for the evaluation of the electric receivers. Two copper electrodes
- 509 are used to vary the input signals. A pair of silver chloride electrodes are placed at the
- 510 corner of a tank with an area of 68 cm \times 49 cm filled with 15 cm of seawater. A VOM
- 511 is used to measure the self-potential and impedance of the electrodes.
- 512
- 513 Figure 8. The responses of the electrodes with varying frequencies. The response curves
- 514 of V_0/V_i are proportional to the frequency on a log scale.
- 515 516 Figur
- Figure 9. The responses of the electrodes with varying voltages. The input was rangedfrom 500 mVDC to 2,500 mVDC to check the induced voltage; the induced voltages
- 518 are proportional to the input voltages.
- 519
- Figure 10. A map of the field test to evaluate the acoustic transducer, acoustic controller,and 8011M.
- 522
- 523 Figure 11. A location map showing the BBYBs and OBEM with triangle and diamond
- 524 symbols, respectively.
- 525

- 526 Figure 12. The OBEM01 time series data. The panels from top to bottom in the figure
- 527 show the four magnetic fields: TMF, HX, HY, and HZ, the two electric fields: EX and
- 528 EY, and the two inclinations: TX and TY.
- 529
- 530 Figure 13. Comparison of the OBEM01 and 1802OBS time series data during the two
- 531 earthquakes. The two earthquakes affected the inclinations. The first and secondary
- earthquakes occurred at 12:41 UTC and 12:47 UTC, respectively, on 04/27/2018.
- 533
- 534 Figure 14. The variations in PGV, TMF, HY, TX, and TY during the first earthquake.
- 535 The PGV of 2.63 cm/s affected the inclinations by 0.601° and 0.404° for TX and TY,
- 536 respectively, and the HY magnetic field had a peak of 100 nT.

TABLES AND FIGURES

input (V)	output(MX)	remove offset(MX)	output(MY)	remove offset(MY)	output(MZ)	remove offset(MZ)	input	sensitivity(MX)	error%(MX)	sensitivity(MY)	error%(MY)	sensitivity(MZ)	error%(MZ)	
-10.0	-6471112.3	-6474180.3	-6472546.0	-6471775.5	-6476434.0	-6472369.2	-10.0	647418.03	-1.322	647177.55	-1.342	647236.92	-1.311	
-9.0	-5869208.1	-5872276.1	-5871019.8	-5870249.3	-5874491.2	-5870426.4	-9.0	652475.12	-0.551	652249.92	-0.568	652269.60	-0.543	
-8.0	-5249375.0	-5252443.1	-5251749.3	-5250978.8	-5254300.4	-5250235.6	-8.0	656555.38	0.070	656372.35	0.060	656279.45	0.068	
-7.0	-4600873.9	-4603941.9	-4603731.6	-4602961.1	-4605554.6	-4601489.8	-7.0	657705.99	0.246	657565.87	0.242	657355.68	0.232	
-6.0	-3943651.8	-3946719.8	-3946684.9	-3945914.4	-3948745.5	-3944680.7	-6.0	657786.64	0.258	657652.39	0.255	657446.78	0.246	
-5.0	-3285800.0	-3288868.0	-3289015.6	-3288245.1	-3291209.9	-3287145.1	-5.0	657773.61	0.256	657649.02	0.255	657429.02	0.243	
-4.0	-2628274.7	-2631342.8	-2631609.2	-2630838.7	-2634025.5	-2629960.7	-4.0	657835.69	0.266	657709.67	0.264	657490.16	0.253	
-3.0	-1970402.2	-1973470.2	-1973864.9	-1973094.4	-1976483.5	-1972418.7	-3.0	657823.41	0.264	657698.14	0.262	657472.91	0.250	
-2.0	-1312631.3	-1315699.4	-1316216.6	-1315446.1	-1319057.9	-1314993.0	-2.0	657849.68	0.268	657723.04	0.266	657496.52	0.254	
-1.0	-654832.3	-657900.3	-658536.9	-657766.4	-661600.3	-657535.4	-1.0	657900.33	0.275	657766.39	0.273	657535.43	0.260	
0.0	3068.0	0.0	-770.5	0.0	-4064.8	0.0	1.0	657880.86	0.272	657759.33	0.271	657535.67	0.260	
0.0	3018.0	0.0	-810.1	0.0	-4118.9	0.0	2.0	657859.96	0.269	657741.27	0.269	657504.87	0.255	
1.0	660948.9	657930.8	656988.8	657798.9	653470.8	657589.8	3.0	657837.12	0.266	657727.37	0.267	657491.44	0.253	
2.0	1318787.9	1315769.9	1314712.0	1315522.1	1310944.9	1315063.8	4.0	657859.68	0.269	657747.51	0.270	657499.55	0.254	
3.0	1976579.4	1973561.4	1972411.6	1973221.7	1968409.5	1972528.4	5.0	657811.97	0.262	657692.96	0.261	657443.49	0.245	
4.0	2634506.8	2631488.7	2630219.5	2631029.6	2625933.4	2630052.3	6.0	657832.48	0.265	657705.29	0.263	657459.85	0.248	
5.0	3292127.9	3289109.8	3287694.3	3288504.4	3283152.6	3287271.6	7.0	657688.48	0.243	657584.21	0.245	657397.26	0.238	
6.0	3950062.9	3947044.9	3945461.2	3946271.3	3940694.3	3944813.2	8.0	656372.97	0.043	656448.69	0.072	656415.89	0.089	
7.0	4606887.4	4603869.3	4602318.9	4603129.0	4597716.0	4601834.9	9.0	652314.56	-0.576	652334.15	-0.556	652469.16	-0.513	
8.0	5254051.8	5251033.8	5250819.0	5251629.1	5247262.3	5251381.2	10.0	647283.74	-1.343	647270.99	-1.327	647438.99	-1.280	
9.0	5873899.1	5870881.0	5870236.8	5871046.9	5868157.6	5872276.5	Average	656093.29		655978.81		655833.43		
10.0	6475905.4	6472887.3	6471939.4	6472749.5	6470325.1	6474444.0	Average sensitivity 655968.51							

Level (D)	Ordered (EV)	for (FV)	Order (EV)	for (TV)	in and (II)	en di ciente (EN)			
Input (V)	Output (EX)	remove offset (EX)	Output (EY)	remove offset (EY)	input (V)	sensitivity (EX)	error%(EX)	sensitivity (EY)	error% (EY)
-0.0060	-7973544.4	-8134716.5	-8135152.5	-8127780.7	-0.0060	1355786076.8	-0.186	1354630119.94	-0.413
0.0050	6611209.2	6772281.2	6778600.0	6771207.0	0.0050	1254476260 4	0.283	1354265440.87	0.439
-0.0050	-0011209.2	-0772381.3	-0778099.0	-07/1327.2	-0.0050	1554470200.4	-0.285	1334203449.87	-0.439
-0.0040	-5257318.1	-5418490.2	-5459462.4	-5452090.6	-0.0040	1354622556.8	-0.272	1363022659.48	0.204
-0.0030	-3909730.8	-4070902.9	-4084816.3	-4077444.6	-0.0030	1356967645.6	-0.099	1359148194.55	-0.081
-0.0020	-2558460.2	-2719632.3	-2729127.4	-2721755.7	-0.0020	1359816155.1	0.110	1360877857.04	0.047
-0.0010	-1207366.1	-1368538.2	-1376888.8	-1369517.1	-0.0010	1368538175.4	0.753	1369517055.70	0.682
0.0000	161172.1	0.0	-7371.7	0.0	0.0010	1368374397.6	0.740	1368868765.94	0.634
0.0000	95647.7	0.0	-86742.8	0.0	0.0020	1359089788.7	0.057	1361166374.27	0.068
0.0010	1464022.1	1368374.4	1282126.0	1368868.8	0.0030	1357537440.6	-0.057	1359385875.47	-0.063
0.0020	2813827.3	2718179.6	2635589.9	2722332 7	0.0040	1354770300.9	-0.261	1351072742 78	-0.674
0.0020	2013021.5	2/10179.0	20000000	2,22352.1	0.0040	1351170500.7	5.201	1331012142.10	0.074
0.0030	4168260.1	4072612.3	3991414.8	4078157.6	0.0050	1354197292.1	-0.303	1349041143.00	-0.824
0.0040	5514728.9	5419081.2	5317548.2	5404291.0	0.0060	1355623271.0	-0.198	1354837547.58	-0.397
0.0050	6866634.2	6770986.5	6658462.9	6745205.7	Average	1358316613.4		1358819482.1	
						Average s	ensitivity 1	358568047.8	
0.0060	8229387.4	8133739.6	8042282.5	8129025.3					

input(V)	output(TX)	remove offset(TX)	output(TY)	remove offset(TY)	input	sensitivity(TX)	error%(TX)	sensitivity(TY)	error%(TY)
-5.00	-8387520.5	-8386705.4	-8387650.3	-8386680.2	-5.0	1677341.1	-0.016	1677336.04	-0.029
-4.00	-6712516.4	-6711701.2	-6712951.5	-6711981.4	-4.0	1677925.3	0.019	1677995.36	0.011
-3.00	-5034477.1	-5033661.9	-5034843.7	-5033873.6	-3.0	1677887.3	0.017	1677957.86	0.008
-2.00	-3356824.4	-3356009.2	-3357098.5	-3356128.4	-2.0	1678004.6	0.024	1678064.22	0.015
-1.00	-1678971.4	-1678156.3	-1679215.6	-1678245.5	-1.0	1678156.3	0.033	1678245.46	0.026
0.00	-815.2	0.0	-970.1	0.0	1.0	1678289.0	0.041	1678377.40	0.033
0.00	-902.3	0.0	-1060.3	0.0	2.0	1678208.8	0.036	1678269.99	0.027
1.00	1677386.7	1678289.0	1677317.1	1678377.4	3.0	1678386.2	0.047	1678923.87	0.066
2.00	3355515.3	3356417.6	3355479.6	3356540.0	4.0	1678457.5	0.051	1679001.78	0.071
3.00	5034256.3	5035158.6	5035711.3	5036771.6	5.0	1673403.6	-0.250	1673981.58	-0.228
4.00	6712927.8	6713830.2	6714946.8	6716007.1	Average	1677606.0		1677815.36	
5.00	8366115.7	8367018.0	8368847.6	8369907.9		Average s	ensitivity	1677710.6	

Table 3

	Turi	n-on Mode	(mA)	Recording Mode (mA)			
Logger S/N	7.2V for Data logger	7.2V for Sensors	Power consumption	7.2V for Data logger	7.2V for Sensors	Power consumption	
OBEM01	32	104	0.98	31	105	0.98	
OBEM02	30	94	0.89	29	97	0.91	
OBEM03	29	103	0.95	29	104	0.96	

Table 5

	Electrical potential	Impedance	Input DC5V, induce voltage		
OBEM01(EX)	0.56 mV	245 Ω	164 mV		
OBEM01(EY)	0.26 mV	272 Ω	167 mV		
OBEM02(EX)	3.63 mV	243 Ω	81 mV		
OBEM02(EY)	1.93 mV	370 Ω	95 mV		
OBEM03(EX)	2.38 mV	267 Ω	83 mV		
OBEM03(EY)	2.1 mV	331 Ω	83 mV		

Table 6

Transducer S/N	Enable Beep	Disable Beep	1st Ranging Distance show	2nd Ranging Distance show	3rd Ranging Distance show	4th Ranging Distance show	5th Ranging Distance show	Judgment
	(Thics)	(Thics)						
35427	15	15	629	628	630	627	628	Good
35428	15	15	629	627	629	630	629	Good
35429	15	15	630	630	630	629	629	Good

		1st	2nd	3rd	4th	5th					
	Enable	Ranging	Ranging	Ranging	Ranging	Ranging	RELEASE1	OPTION1	RELEASE2	OPTION1	DISABLE
S/N	Beep	Distance	Distance	Distance	Distance	Distance	Веер	Веер	Beep	Веер	Веер
	(Times)	show on	Times/Volt	(Times)	Times/Volt	(Times)	(Times)				
		8011M	8011M	8011M	8011M	8011M					
		(m)	(m)	(m)	(m)	(m)					
50854	15	628	629	630	630	630	15/ 12.77V	15	15/ 12.77V	15	15
50784	7	629	630	630	630	630	7/ 12.77V	7	7/ 12.77V	7	7
50783	15	628	628	628	629	631	15/ 12.77V	15	15/ 12.77V	15	15

Figure 1

Figure 2

Figure 3

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10

Figure 11

Figure 12

Figure 13

Figure 14